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Genetic Differences in Susceptibility to
Chemically Induced Myelotoxicity and
Leukemia
by Daniel W. Nebert*

The Ah locus represents a complex "cluster" of genese controlling the induction of numerous
drug-metabolizing enzyme "activities" by polycyclic aromatic compounds. Allelic differences
at the Ah locus are reflected in the large differences in inducibility of cytochrome P1-450 and
benzo[a]pyrene metabolism in numerous tissues when the mice receive the chemical daily in
their diet. This experimental model system offers to the hematologist and clinical pharmacolo-
gist a means to study genetic differences in toxic chemical depression of the bone marrow, as
well as a potential model to study aplastic anemia and leukemia explainable on a single-gene
basis.
The genetically "responsive" individual who is at increased risk for cancer caused by

subcutaneous or topical or intratracheal polycyclic hydrocarbons is at decreased risk for
toxicity of the bone marrow and leukemia caused by oral benzo[alpyrene (when compared with
the genetically "nonresponsive" individual receiving the same dose of the same xenobiotic). In
other words, tissue sites in direct contact with the carcinogen develop cancer in responsive
animals because of induced P1-450; tissues in distant sites of the body may develop malignancy
in nonresponsive animals because more carcinogen reaches that tissue due to decreased P,-450
induction all over the body and therefore decreased detoxication. Not only the dose but the
route of administration and the tissue in which the malignancy or toxicity develops are
therefore very important in the interpretation of data from tumorigenesis or toxicity
experiments involving P1-450 inducers such as polycyclic hydrocarbons.
There exists sufficient evidence that heritable variation of the Ah locus occurs in man.

Growing evidence indicates that persons with higher aryl hydrocarbon hydroxylase inducibility
in their cultured mitogen-activated lymphocytes may have a statistically significantly in-
creased risk for certain types of cancer and drug toxicity. It remains to be determined at the
present time, however, whether this genotype can be used as a biochemical marker in the
individual patient for predicting increased susceptibility to certain types of environmentally
caused cancers or toxicity in man.

Introduction
To study the genetic control of drug metabolism

is often called pharmacogenetics. In a single sen-

tence, pharmacogenetics may be defined as the
attempt to understand why the same dose of the
same drug given to two different individuals (with
the possible exception of identical twins) may cause

widely varying responses. These responses include
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therapeutic effects of a drug, e.g., anticoagulation
or control of seizures, but also unwanted deleteri-
ous effects such as cancer or drug toxicity. The
experimental system to be examined in detail in
this chapter represents principally a genetic differ-
ence in receptor concentration; because of this
defect, there are large genetic differences in the
biotransformation and pharmacokinetics of certain
drugs and other environmental pollutants, resulting
in important differences in risk toward cancer, drug
toxicity, mutation, and birth defects.
The general characteristics of the P-450-mediated

monooxygenases and their coordinated enzymes
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are first described. Secondly, the genetic differ-
ences in this model system in mice are examined.
How these differences are associated with increased
risk toward myelotoxicity and leukemia are then
shown as examples. Numerous other conditions in
mice associated with this genetic system are also
listed. Lastly, current evidence for this genetic
difference in man is briefly assessed.

Cytochrome P-450 Monooxygen-
ases and Coordinated Enzymes
Many environmental pollutants and other foreign

compounds are chemicals that are so hydrophobic
they would remain in the body indefinitely were it
not for the metabolism resulting in more polar
derivatives. These drug-metabolizing enzyme sys-
tems, which are localized principally in the liver,
are usually divided into two groups: phase I and
phase II. During phase I metabolism, one or more
polar groups (such as hydroxyl) are introduced into
the hydrophobic parent molecule, thus allowing a
handle, or position, for the phase II conjugating
enzymes (such as UDP glucuronosyltransferase) to
attack. The conjugated products are sufficiently
polar, so that these detoxified chemicals are now
excreted from the cell and from the body (1).
One of the most interesting of the phase I enzyme

systems is a group of enzymes known collectively as
the cytochrome P-450-mediated monooxygenases. *
The genetic relationship between these inducible
enzymes and cancer or toxicity has been reviewed
recently (3). These membrane-bound enzyme sys-
tems are known to metabolize: polycyclic aromatic
hydrocarbons such as benzo[a]pyrene (BP) (ubiqui-
tous in city smog, cigarette smoke and charcoal-
cooked foods) and biphenyl; halogenated hydrocar-
bons such as polychlorinated and polybrominated
biphenyls, insecticides, and ingredients in soaps
and deodorants; strong mutagens such as N-methyl-
N'-nitro-N-nitrosoguanidine and nitrosamines;
aminoazo dyes and diazo compounds; N-acetylary-
lamines and nitrofurans; numerous aromatic amines,
such as those found in hair dyes; nitro aromatics,
and heterocyclics; wood terpenes; epoxides; carba-
mates; alkyl halides; safrole derivatives; certain
fungal toxins and antibiotics; many of the chemo-

*Cytochrome P-450 is defined as all forms of CO-binding
hemoproteins associated with membrane-bound NADPH-
dependent monooxygenase activities. We define cytochrome
P1-450 as all forms of CO-binding hemoprotein that increase in
amount concomitantly with rises in induced AHH activity
following polycyclic aromatic inducer treatment. In view of more
than one such form of P,-450 (2), it is emphasized that this
definition of PI-450 is simplistic.
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therapeutic agents used to treat human cancer;
most drugs; small chemicals such as benzene,
thiocyanate, or ethanol; both endogenous and syn-
thetic steroids; and other endogenous compounds
such as biogenic amines, indoles, thyroxine, and
fatty acids.

Evidence is growing that metabolism to reactive
intermediates by cytochrome P-450-mediated
monooxygenases is a prerequisite for mutagenesis,
carcinogenesis, and toxicity caused by numerous
drugs, polycyclic hydrocarbons, and other envi-
ronmental pollutants. These reactive intermediates
probably bind covalently to numerous cellular mac-
romolecules. Most of this binding is probably ran-
dom, but some may be nonrandom, i.e., specific
binding dependent upon the chemical structures of
the reactive intermediate and the cellular macromole-
cule. Among these various types of covalent bind-
ing, there probably exists a very small amount of
important binding of the ultimate carcinogen to its
critical subcellular target, thereby initiating
tumorigenesis. Two examples of apparent specific
binding include the binding of BP 7,8-diol-9,10-
epoxide to the 2N-amino of guanine (4) and of
aflatoxin B1 2,3-oxide to the 7N of guanine (5).
The steady-state levels of these reactive electro-

philic intermediates and, consequently, the rates at
which they interact with the critical nucleophilic
target are dependent upon a delicate balance be-
tween their generation and detoxication (Fig. 1).
Changes in the balance between toxification and
detoxication in any particular tissue of an individual
may therefore affect his risk of tumorigenesis or
toxicity.

The Ah Locus: Genetic Expression
of Induced AHH Activity and
Cytochrome P1-450 Induction
The Ah locus is an experimental model system

that has provided several good examples of a
delicate balance between genetic and environmen-
tal factors in the etiology of cancer, drug toxicity,
and birth defects (2). The Ah locus of the mouse
regulates the induction (by polycyclic aromatic
compounds such as 3-methylcholanthrene, BP, or
2,3,7,8-tetrachlorodibenzo-p-dioxin) of numerous
drug-metabolizing enzyme "activities" associated
with several new induced forms of cytochrome
P1450. The induction of aryl hydrocarbon hydroxylase
(AHH) activity and more than 20 other mono-
oxygenase activities and associated P1-450 occurs in
3-methylcholanthrene-treated B6 (the inbred
C57BL/6N mouse strain) and other genetically
"responsive" inbred strains and is absent or always
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FIGURE 1. Scheme for the membrane-bound multicomponent monooxygenase system(s) and the various
possibly important pathways for hydrophobic substrates. For any given substrate, the relative balance
between metabolic activation and detoxication likely would (liffer among different tissues, strains, and
species. Age, genetic expression, nutrition, hormone concentrationi, diurnal rhythm, pH, saturating
versus nonsaturating conditions of the substrate, Km and Vmax for each enzyme, subcellular
compartmentalization of each enzyme, efficiency of DNA repair, and the immunological competence of the
animal may all be important factors affecting this balance.

much lower in 3-methylcholanthrene-treated D2
(the inbred DBA/2N mouse strain) and other genet-
ically "nonresponsive" strains (at any given dose of
inducer). Besides the liver, this genetic expression
is seen in such tissues as lung, kidney, intestine,
lymph nodes, skin, bone marrow, pigmented epi-
thelium of the retina, brain, mammary gland,
uterus, ovary, and testis. The genetic response is
therefore called "systemic," or occurring through-
out virtually all tissues of the animal. Responsiveness
to aromatic hydrocarbons has been designated the
Ah complex: Ahb is the dominant allele; Ahd is the
recessive allele; the AhblAh(d heterozgote is
phenotypically similar to the Ahb/Ahb mouse in
terms of degree of responsiveness (Fig. 2).

Several studies indicate that the fundamental
genetic difference is in the regulatory Ah gene,

Ahb/Ahb X Ahd/Ahd Ahb/Ahd X Ahb/Ahb
- - -v -

F Ahb/Ahd Ahb/Ahb:Ahb/Ahd

Ahb/Ahd X Ahb/Ahd Ahb/Ahd X Ahd/Ahd
F2 Ahb/Ahb:Ahb/Ahd Ahb/Ahd:Ahd/Ahd Ahb/Ahd:Ahd/Ahd

FIGURE 2. Simplified genetic scheme for aromatic hydrocarbon
"responsiveness" in the mouse (6). Reproduced with permis-
sion from Plenum Press.
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which encodes for a cytosolic receptor (Fig. 3)
capable of binding to inducers such as 3-methyl-
cholanthrene, BP, and 2,3,7,8-tetrachlorodibenzo-p-
dioxin. To our knowledge, only foreign chemicals
bind to this receptor with high affinity (less than 1
nM). The B6 mouse appears to have at least 50
times more receptor (and/or increased affinity to-
ward inducers of P1-450) than the Ah"'IAhV' mouse;
translocation of the inducer-receptor complex into
the nucleus has now been demonstrated in the
phenotypically responsive heterozygote and homo-
zygote (8). What happens in the nucleus is not yet
known, but somehow the "message" (that these
inducers of P1-450 exist in the cell's microenviron-
ment) is received; the response is transcription of
specific mRNA's, translation of these mRNA's into
specific enzymes such as P1-450, and incorporation
of P1-450 into cellular membranes. These induced
enzymes may aid in detoxication or they may
generate increased amounts ofreactive intermediates.

Genetic Differences in
Myelotoxicity
Large doses of oral BP (100 to 125 mg/kg/day)

produce bone marrow toxicity in AhdlAh(I mice,
whereas the Ahb/Ahb and Ahb/Ahd individuals are
extremely resistant to oral BP-induced marrow
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FIGURE 3. Diagram of a cell and the hypothetical scheme by which a cytosolic ieceptor, product of the
regulatory Ah gene, binds to inducer (7). Depending upon the half-life of the reactive intermediate, the
rate of formation of the intermediate, and the rate of conjugation and other means to detoxify the
intermediate-important covalent binding may occur in the same cell in which metabolism took place, or
in some distant cell. Although the "unknown critical target" is illustrated here in the nucleus, there is
presently no experimental evidence demonstrating unequivocally the subcellular location of a "critical
target(s)" required for the initiation of drug toxicity or cancer or, for that matter, whether the "target" is
nucleic acid or protein. Reproduced with permission from Dr. W. Junk Publishers.

toxicity (9). Figure 4 illustrates the lethal effects of
high doses of oral BP in Ahd/Ah(d mice. Concomi-
tant oral phenobarbital treatment protects the
AhdlAhd individual from oral BP toxicity, probably
by inducing various drug-conjugating enzyme activi-
ties. Concomitant oral a-naphthoflavone treatment
protects the Ahd/Ahd individual, presumably by
inhibiting P1-450-mediated metabolism (in the my-
eloid precursor cells of the marrow) so that a
decreased amount of toxic BP intermediates can be
generated. These observations are supported by
the markedly greater amount of radiolabeled BP
(Fig. 5) which enters the marrow and which be-
comes metabolized and covalently bound in the
marrow of the Ahd/Ahd mouse, compared with that
of the AhblAhd mouse receiving the same diet.
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Effect of Oral BP on Induced BP
Metabolism
Table 1 shows that daily doses of oral BP induced

AHH activity in the Ahb/Ahd heterozygote more
than 800-fold in bowel, approximately 3-fold in
liver, and more than 16-fold in bone marrow. Daily
doses of oral BP induced AHH activity in the
AhdlAhd mouse about 50-fold in bowel and more
than 7-fold in marrow, but a decrease in AHH
activity was seen in liver. Further, the rate of
increase in AHH activity as a function of days in
mice receiving the BP diet was much slower in the
nonresponsive Ahb/Ahd than in the responsive
AhblAhd mouse.

Concomitant phenobarbital treatment induced
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FIGURE 4. Plots of (A) toxicity of BP ingested
Ahb/Ahd heterozygotes and Ah"/Ah" homc
B6D2Fj x D2 backcross and effects of (B)
phenobarbital (PhBarb), (C) oral phenobarbi
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period (10). Reproduced with permission from
Inc.
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whereas a-naphthoflavone protection is caused by
inhibition of BP metabolism.

Length of BP Exposure and
Subsequent Appearance of
Myelotoxicity
Between 3 and 5 days of continuous oral BP (120

Barb, i.p. + BP mg/kg/day) was required to cause aplastic anemia
* ._ (Fig. 6): none died when exposed for only 2 days;

20% died when exposed for 3 days; about 83% died
when exposed for 4 days; and 100% died when

PhBarb, po. exposed for 5 or more days. Development of the
aplastic anemia and therefore the mean survival

BP time was longer, the shorter the length of oral BPb, p.o. + exposure; all deaths occurred within 32 days follow-

ing the completion of the oral BP regimen. Hence,
if the toxic insult can be repaired within 32 days on
a regular diet, the damage to the bone marrow is no

No BP longer irreversible (9).
- o-_____z- In Ahd/Ahd mice receiving oral BP for 2 days and

2 then the regular diet for 8 days, the bone marrow

BP was only slightly hypocellular; in Ahd/Ahd mice
receiving oral BP for 5 days and then the regular

j diet for 5 days, the marrow was considerably more
hypocellular. The bone marrow in AhdlAh(l mice
after 5 days of oral BP was extremely hypocellular.

-A0NF----- In those few surviving Ahd/Ahd mice receiving oral
BP for 4 days and then the regular diet for 30 days,

-.ANF + BP- the histological appearance of bone marrow was
*_ normal. This experimental picture is similar to that

reported in total-body irradiation of anemic mice
_] (11): the marrow cellularity reaches a nadir be-

tL-.--.| tween 2 and 8 days after the irradiation insult and
40 50 recovers fully by 12 to 30 days. In other words, the

chemical toxicity produced by oral BP looks similar
and quite closely parallels the nonspecific marrow

daily among the toxicity produced by physical damage (x-ray). How-
zygotes of the ever, there exists an underlying genetic predisposi-
intraperitoneal tion for the chemical toxicity to occur, and this

tal continuously . .
mys, and (E) oral genetic d9iference might not be expected to occur

icity in Ah'/Ah' with the x-irradiation-caused toxicity. [A genetic
started on each difference in radiosensitivity between normal (wiw)
ver the 50-day and anemic (WIW) mice, however, has been reported
iMarcel Dekker, (11) and is caused by differences in regeneration

capability of erythropoietic tissue.]
This type of latent effect (Fig. 6) is therefore

Id marrow of distinctly different from that seen with chloram-
Concomitant phenicol-induced aplastic anemia in man (12). To
ier hand, did date, the calf is the only experimental animal in
hese tissues. which aplastic anemia can be consistently produced
protection of by a chemical after a latency period. In this case,
ie induction, the agent is S-(1,2-dichlorovinyl)-L-cysteine (13).
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FIGURE 5. Pharmacokinetic uptake of BP administered in the diet (approximately 120 mg/kg/day) in (-)
Ahb/Ah(I heterozygotes and (0) AhI/AhV homozygotes in the absence (top four graphs) or presence

(bottom four graphs) of oral phenobarbital (PhBarb). The effect of oral Q-naphthoflavone (ANF) on

uptake of BP in AhV'/AhO individuals (O) is also shown in the top four graphs. The "nmol BP equivalents"
comprise some metabolites of BP, but more than 90% represents the inonmetabolized parent drug. Tissue
samples were combined from groups of five or six mice (10). Reproduced with permission from Marcel
Dekker, Inc.

Size of Oral BP Dose and Onset
of P1-450-Mediated
Leukemogenesis
Although massive doses of 100 or 125 mg BP

ingested/kg/day produce bone marrow toxicity and
death in 100% of AhdlAh(I mice in less than 4
weeks, no responsive AhblAhb or AhblAh,( mouse

develops aplastic anemia even when this dose is
continued for 6 months (14). Because these are such
large doses of BP, we wondered how small a dose of
oral BP would still cause an effect associated with
the Ah locus.

Figure 7 shows the results of groups of 30
Ahd/AhdI or Ahb/Ahd mice which received esti-
mated doses of 12 or 6 mg BP/kg/day. Differences in
weight gain attributed to allelic differences at the
Ah locus were detectable. To our surprise, howev-
er, the mice that became ill and began dying did not
have hypoplastic or aplastic bone marrow but
rather developed hematopoietic neoplasms, espe-
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cially of the lymph nodes, spleen and thymus. No
increased incidence of leukemia or differences in
weight gain between AhdlAhd and Ahb/Ah" mice
were found at estimated doses of 1.2 mg of BP/kg/day
in the diet for 240 days (data not illustrated).
When a-naphthoflavone was added to the diet at

a dose 20 times greater than that of BP (Fig. 7), the
incidence of leukemia was prevented almost
completely, and the general health of the Ah"'lAh('
mice remained as good as that of Ahb/Ah(' mice
receiving 12 mg BP/kg/day. These data suggest that
a-naphthoflavone-sensitive metabolism of BP- pre-
sumably cytochrome Pl-450-in the bone marrow
of AhdlAh' individuals is responsible for producing
the reticuloendothelial malignancies.
AhdlAhd mice are more susceptible than Ahb/Ah('l

mice to leukemia produced by percutaneously ap-
plied 3-methylcholanthrene (18). Obviously the pres-
ence or absence of murine leukemia virus expressed
by the various inbred strains (19) will modify the
response elicited by P1-450-mediated metabolism of
polycyclic hydrocarbons under the control of the Ah
locus.
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Table 1. AHH activity in the liver, bowel, and bone marrow in mice receiving oral BP.a

Microsomal specific AHH activity, units/mg protein

Genotype Diet Days on diet Bowel Liver Bone marrow

Ahb/Ahd Control 12 <1 510 <1
AhdI/Ahd 12 < 1 470 < 1
Ahb/Ah(I BP 0 <1 480 <1

2 410 1180 12
6 810 1380 18
9 640 1340 16
12 360 1420 14

Ahd/Ahd 0 <1 500 <1
2 5 460 6
6 18 370 7
9 22 310 6
12 48 280 2

Ahb/Ahd BP + phenobarbital 2 440 1600 15
12 380 1890 19

Ahd/Ahd 2 11 1020 1
12 60 980 4

Ahb/Ahd BP + a-naphthoflavone 2 180 1100 4
12 220 1190 8

Ahd/Ahd 2 2 480 <1
12 21 400 3

aGroups of Ahb/AhdI and Ah(llAhd mice were placed on control, BP, BP plus phenobarbital, or BP plus x-naphthoflavone regimens for
the indicated number of days (10). Microsomal fractions were prepared from the indicated tissues combined from groups of five or six
mice, and AHH activity was determined.

=* DAYS ON BP DIET a =DEATH OF INDIVIDUAL 2

0

+ ~~~~~~~~~~~~~~7, m

;- ~~~~~~~~AM 0

0 10 20 30 40

DAYS OF EXPERIMENT

FIGURE 6. Effect of the length of time of oral BP treatment on
the occurrence or lack of occurrence of terminal aplastic
anemia occurring several weeks later in Ah"lAh" mice (9).
From top to bottom, groups of 30 mice each received oral BP
2, 3, 4, 5, 7, and 10 days, respectively, following which
normal diet was reinstated. Deaths, histologically confirmed
to be associated with hypoplastic bone marrow, occurred in
0/30, 6/30, 25/30, 30/30, 30/30, and 30/30, respectively. Follow-
ing cessation of the oral BP and return to the regular diet,
the mean time for the mouse to die from aplastic anemia was
about 23, 16, and 3 days for the groups exposed to 5, 7, and 10
days of oral BP, respectively. All mice that were alive on day
37 of the experiment remained alive at 60 days, at which time
the experiment was stopped. Reproduced with permission
from Springer-Verlag.

June 1981

Protective Barrier by the Ah-
Responsive Intestinal Epithelium
BP treatment (30 F.g/ml of growth medium) is

much more toxic to Ahb/Ahd marrow cells than
Ahd/Add marrow cells in culture (unpublished data).
When AhdlAhd mice having transplanted Ahb/Ahb
marrow are given oral BP (100 mg/kg/day), their
death rate is similar to sham-treated AhV'/AhO' mice
with Ahd/Ahd marrow; Ahb/Ahb mice having
transplanted AhdlAhd marrow are just as resistant
to oral BP daily as sham-treated Ahb/Ahb mice with
Ahb/Ahb marrow (20). We therefore conclude that
the Ah-responsive intestine (and/or liver) is impor-
tant in protecting the individual. If the target
marrow cells are exposed directly to BP in culture,
the cells having the higher levels of induced PI-450
are more prone to BP toxicity. Despite the genetic
origin of the bone marrow, the mice having the
Ah /Ahd intestine and liver are more prone to
develop aplastic anemia following oral BP.

Importance of the Route of
Administration

In sum, the picture which has begun to emerge
from numerous studies is categorized in Table 2.
When the carcinogen (or other toxic drug) is placed
in relatively direct contact with the tissue being
studied, the genetically responsive AhblAhb or

17
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FIGURE 7. Incidence of leukemia and mean weight gain for groups of 30 Al'/Ah1' or Allbl/Ah' mice receiving
oral BP (left) at about 12 mg/kg/day or (middle) 6 mg/kg/day (1J). Each symbol represents the mean of 30
(or less, if some had died) mice in the group; the I-bars represent stan(lardl deviations. Weanlings from
the B6D2F1 x D2 backcross were phenotyped by the zoxazolamine paralysis test, as (lescribed previously
(16). Ten days later, the BP diet, prepared as described previously (14), was begun. In the case of
x-naphthoflavone (ANF) (right), approximately 120 mg of a-naphthoflavone/kg/day was included with the
6 mg of BP/kg/day. Wasted animals were killed and studied when it was ju(dged that they probably would
not live more than 1-2 days longer. We are grateful to Drs. Lawrence, Corash, Michael M. Orlando and
Alan S. Rabson for their advice about performing autopsies and examining histological sections of lymph
nodes, spleen, thymus, bone marrow, kidney and liver. Whole blood counts were not especially helpful in
the diagnosis of hematopoietic tumors. Lymphocytic leukemias, apparent stem-cell leukemias, and
reticulum-cell neoplasms were all scored as "leukemia," according to the classification and description by
Murphy (17). At an estimated 12 mg of BP/kg/day (left), all Ah"lAh" mice died before 110 days on the diet;
none of the starting 30 AhblAh"I had died by day 100, and three had died after 150 (lays. At an estimated 6
mg of BP/kg/day (center), 24 of the starting 30 Ah"/Ah" mice and two of the starting 30 Ahh/Ah" mice had
died after 240 days on the diet. At an estimated 6 mg of BP/kg/day (right), 19 of the starting 30 not
receiving a-naphthoflavone had died, and four of the starting 30 receiving a-naphthoflavone had died
after 240 days on the diet. Reproduced with permission from Pergamon Press Ltd.

AhblAhd mouse is at increased risk for developing a
tumor or toxicity in that tissue, compared with the
nonresponsive AhdlAhd receiving the same dose of
xenobiotic (Fig. 8). On the other hand, if the
malignancy or toxicity is found at a site distant
from the administered drug, the AhdlAhd mouse is
at increased risk, compared with the Ahb/Ah" or
Ahd/Ahd individual receiving the same dose of
xenobiotic. In this latter case, we believe the data
are explainable by the "first-pass effect," also
termed "presystemic drug elimination" (31). Fun-
damentally, presystemic elimination reflects the
metabolism and excretion of a drug before the drug
reaches its site of action. How BP metabolism in
the intestine can be induced 400- to 800-fold by oral
BP-yet not exhibit any apparent toxicity (9,
10)-is not clear; an increase in conjugating en-
zymes or mechanism of efficient excretion of toxic
metabolites must be involved. It will be of interest
to see if the AhdlAhd mouse is more susceptible
than the Ahb/Ahd mouse to in utero fetal toxicity or
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primordial oocyte depletion, when the polycyclic
hydrocarbon is administered daily in the diet.
The data summarized in this report demonstrate

that Pl-450 induction represents a double-edged
sword. Therefore, in all cancer and toxicity exper-
iments, the dose and especially the route of admin-
istration and the tissue in which the malignancy or
toxicity develops are all very important factors in
the interpretation of the observations.

Evidence of the Ah Locus in the
Human
Lindane (32-34), other insecticides (32, 33), vari-

ous anticancer chemotherapeutic agents (35), and
chloramphenicol (36) have all been implicated in the
cause of certain aplastic anemias in man. To prove
that a drug or chemical is the direct cause of
aplastic anemia has always been difficult in clinical
medicine, and most cases remain categorized as
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Table 2. Summary of toxicity and tumorigenesis in the mouse associated with the Ah locus.a

Individual at
increased risk Tumor or toxicity Route of administration Chemical References

Ahb/Ahb and Skin inflammation Topical 7,12-Dimethylbenzora]anthracene (21)
Ahb/Ahd Fibrosarcomas Subcutaneous 3-Methylcholanthrene or BP (22)

Pulmonary tumors Intratracheal 3-Methylcholanthrene >> BP (23)
In utero fetal toxicity Intraperitoneal BP, 3-methylcholanthrene, (24)

7, 12-dimethylbenzo[a]anthracene
Primordial oocyte depletion Intraperitoneal 7,12-Dimethylbenzo[a]anthracene, (25)

3-methylcholanthrene, BP
Epidermal carcinoma Topical BP (26)
Cleft palate in fetus Intraperitoneal 2,3,7,8-Tetrachlorodibenzo-p-dioxin (27)
Experimental porphyria Intraperitoneal Chlorinated aromatic compounds (28)

Ahd/Ahd Lymphoma, lymphosarcoma Intraperitoneal 7,12-Dimethylbenzo[a]anthracene (29)
Bone marrow toxicity Oral BP (14)
Leukemia Subcutaneous 3-Methylcholanthrene (18)
Leukemia Oral BP (15)

aData from Nebert (30).

idiopathic. Almost all of these agents mentioned peripheral lymphocytes have been cultured in the
require P-450-mediated metabolism either for de- presence of mitogens and an inducer of AHH
toxication or for metabolic potentiation to attain the activity such as 3-methylcholanthrene, in order to
desired pharmacological effect. Chloramphenicol assess the human Ah phenotype. In spite of the
and p,p'-DDT toxicity are not associated with the shortcomings with this assay method reviewed in
Ah locus (unpublished data). We suggest that ref. (37), a growing list of clinical disorders (Table
genetic differences between inbred strains of mice- 3) appears to be associated with the human Ah
with respect to marrow toxicity caused by these locus.
various agents known (or suspected) to cause There clearly exists sufficient evidence that heri-
aplastic anemia in man-might be developed suc- table variation of AHH inducibility occurs in man.
cessfully as a useful laboratory animal experimental Experimental difficulties, however, make it impos-
model. Needless to say, such a model should help sible at this time to be certain of whether AHH
define the etiologic mechanisms, and thereby a induction is controlled by a single genetic locus or
better understanding about treatment and preven- by two or more loci (i.e., polygenic). Until one can
tion, for certain human aplastic anemias. increase the range of fold inducibility of AHH
With the use of 20 to 40 cc of drawn blood, activity and/or decrease the magnitude of day-to-day

Table 3. Human disorders that appear to be associated with the Ah locus.

Association with high or
Disorder low AHH inducibility References

Malignancy
Bronchogenic carcinoma Higha (38-47)
Bronchogenic carcinoma No association found (48-53)
Laryngeal carcinoma Highb (53)
Cancer of oral cavity High' (55, 56)
Cancer of renal pelvis or ureter No association found (57)
Cancer of urinary bladder No association found (58, 59)
Acute leukemia of childhood Lowa (60)

Toxicity
Zoxazolamine-induced fatal hepatic necrosis Unknown (61)
Earlier onset of menopause among cigarette smokers Unknownc (62)
Infertility among cigarette smokers Unknownc (63-66)
Acetaminophen-induced diffuse bilateral cataracts Unknown' (67)

aConsistent with genetic data from inbred strains of mice (3., 15, 22).
bStudies of these disorders in mice have not been specifically carried out, but the human data are consistent with what is known (30)

about environmental carcinogens and their effect on local and distant tissue sites in Ah-responsive and Ah-nonresponsive mice.
cGenetically responsive mice are at increased risk for these disorders (3). In retrospect (or in studies to be designed in the future), it

would have been (or would be) of interest to know the Ah phenotype of afflicted clinical patients.

19June 1981



Ahb/Ahd
4 INDUCTION OF P1-450 TUMORS, TOXICITY

HYDROCARBON -* + TUMORS, TOXICITY - _ IN DISTANT SITES,
4 DETOXIFICATION DISTANT TISSUES

Ahd/Ahd
± INDUCTION OF P1-450 4 TUMORS, TOXICITY

HYDROCARBON -
CL

TUMORS, TOXICITY IN DISTANT SITES,
H

DETOXIFICATION DISTANT TISSUES

FIGURE 8. Illustrated scheme indicating that the genetically responsive AhblAhd individual (top) is at
increased risk for tumors or toxicity at sites in direct contact with the xenobiotic (30). The nonresponsive
AhdlAhd individual (bottom) is at increased risk for tumors or toxicity at distant sites, due to decreased
detoxication in many tissues of the body. Reproduced with permission from Academic Press, Inc.

variability of "control" AHH activity, however,
AHH inducibility in cultured mitogen-activated
lymphocytes or any other similar test system
cannot be used as a promising biochemical marker
for determining who is at risk for aplastic anemia,
leukemia, bronchogenic carcinoma, or other various
types of environmentally caused toxicity or malig-
nancy. We believe that a high ratio of P1-450 to
other forms of P-450 exists in many, if not all,
extrahepatic tissues in vivo, just as appears to be
the case in cultured lymphocytes, monocytes, pul-
monary macrophages, and even skin fibroblasts. An
alternative assay for assessing the human Ah locus
phenotype (such as a receptor assay or a radioim-
munoassay for induced P1-450) might be more
successful than the existing commonly performed
AHH inducibility assay.
The major emphasis of this report, however, has

been to point out the importance of genetics in
response to environmental stimuli. Such genetic
heterogeneity in the human population undoubt-
edly reflects the large amount of "background
noise," thereby making it difficult for the clinical
investigator to discern distinct subgroups. If the
genetic components eventually can be character-
ized among the clinical population, it should become
easier to understand the etiology of environmentally
caused aplastic anemia and/or leukemia.
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